如以下关系式所示灵敏度 误差源与实际驶向变化成正比:
商用MEMS传感器的额定灵敏度误差通常在±5%至±20%以上,因此需要进行校准以减小这些误差。例如ADIS16265和ADIS16135等预校准MEMS5 陀螺仪的额定误差小于±1%,在受控环境中甚至可以达到更高性能。
应用范例:
仓库库存交货
仓库自动化系统目前使用叉车和传送带系统移动材料,以管理库存并满足需求。叉车需要直接人为控制,而传送带系统则需要定期维护。为了最大化仓库价值,许多仓库正在进行重新配置,从而为自主机器人平台的应用敞开了大门。一组机器人仅需要更改软件、对机器人导航系统进行再培训就能适应新任务,完全不需要实施大量工程作业来改造叉车和传送带系统。仓库交货系统中的关键性能要求是机器人必须能够保持行程模式的一致性,可在有障碍物移动的动态环境下安全执行机动动作,并且保证人员安全。为了说明在此类应用中MEMS陀螺仪反馈对Seekur的价值,Adept MobileRobots用实验方式分别展示了在不使用(图8)和使用(图9)MEMS陀螺仪反馈的情况下,Seekur保持重复路径的能力。应注意,为了研究MEMS陀螺仪反馈的影响,该实验未采用GPS或激光扫描校正。
图8.未使用MEMS陀螺仪反馈时的Seekur路径精度。
图8.未使用MEMS陀螺仪反馈时的Seekur路径精度。
图9.使用MEMS陀螺仪反馈时的Seekur路径精度。
比较图8和图9中的路径轨迹,很容易看出两者在保持路径精度上的差异。应注意,这些实验中采用的是早期MEMS技术,支持~0.02°/秒的稳定度。目前的陀螺仪在相同成本、尺寸和功率水平下性能可提高2到4倍。随着这一趋势的延续,在重复路径上维持精确导航的能力将继续改善,这将为开发更多市场和应用(例如医院标本/补给品递送)带来机遇。